Current Situation
There is minimal automation for proactively identifying and preventing fraud. Systems in place are largely rules-based systems that often return high numbers of false positive alerts and are exploited by fraudsters as they learn the rules and how to circumvent them.
Goals and Objectives
Apply fraud management techniques that utilize anomaly detection, customer baseline scoring, real-time video, and appropriate risk tolerances to identify and prevent fraudulent transactions.
Technology Deployed
AI, analytics, video, edge, cloud, and fraud detection software
Use Case Summary
Next-gen fraud management will identify potential sources of fraud online and offline with minimal false positives, maximizing revenue opportunity while minimizing fraud risk.